Strange Animals Podcast

A weekly Science, Medicine and Natural Sciences podcast
 6 people rated this podcast

Best Episodes of Strange Animals Podcast

Mark All
Search Episodes...
This week let's learn about a couple of dangerous birds of New Guinea! They're not what you might think. Join our mailing list! Further Reading/Watching: How Dangerous Are Cassowaries, Really? Inside the Cassowary's Casque Breakfast Club Ep. 34: Jack Dumbacher on Poisonous Birds (a long video but a really great deep dive into the pitohui) The mighty cassowary with a mighty casque on its head, looking like a modern dinosaur, which it is: A cassowary and babies: A hooded pitohui, looking surprised to learn it's toxic: Show transcript: Welcome to Strange Animals Podcast. I’m your host, Kate Shaw. It’s time to revisit New Guinea and its weird and amazing birds! This week we’re going to look at two dangerous birds of New Guinea. Thanks again to M Is for Awesome for the suggestion. Lots of birds are pretty or cute, and that’s great. But some birds…are dangerous. For instance, the cassowary. There are three species alive today, all of which live in New Guinea along with some other nearby islands. The southern cassowary lives in northeastern Australia too. It’s a big, shy, flightless bird that lives deep in the rainforest. The biggest species is the southern cassowary, which can grow up to six and a half feet tall, or 2 meters. Its wings are small but it can run extremely fast, up to 30 mph, or 50 km/h. It can also jump and even swim extremely well. This is surprising not just because it’s such a big bird but because it looks ungainly. It’s shaped sort of like its relation, the emu, although its neck is shorter, with a big chunky body, long strong legs, and a little head in comparison. Females are larger than males on average with more brightly colored necks. The cassowary’s body is covered with black feathers while the legs are bare, as is the neck and head. The neck is bright blue in females, paler blue in males, with red wattles that hang down as decoration. The face is a lighter blue with a black bill. It has spine-like feathers that grow from its small wings, which appear to be for decoration too, or at least the cassowary doesn’t seem to use those spiny feathers for anything. But the most unusual thing about the cassowary is the casque on its head. The casque is a sort of plate that grows on the top of the bird’s head. Different species of cassowary have different shaped casques, and there’s some variation in size and shape of casques from individual to individual. The dwarf cassowary is the smallest, naturally, and has a relatively low casque. The northern cassowary has a larger, taller casque and the southern cassowary has the largest, tallest casque, shaped sort of like your hand if you keep it flat with all your fingers together, only instead of flat it’s sticking up from the top of the bird’s head. Looking at a cassowary is like looking at a dinosaur with a beak. The casque consists of a bony core made up of two layers around an open space, and it’s covered with a keratin sheath. This is similar in structure to the kind of horns many hoofed animals have, like cattle and sheep, but there are plenty of differences. The sheath isn’t as hard as the keratin sheath on a mammal’s horn, for one thing. It’s actually a little bit leathery. It also contains a pocket inside the skull beneath the casque that’s full of delicate tissue made up mostly of tiny blood vessels. No one except the cassowary knows for sure what the casque is for. Over the years, researchers have suggested it might be used as a weapon, it might act as a shield to keep falling fruit from injuring its head when it’s under a fruit tree, it might knock the casque against a tree to make fruit fall, it might use it to dig with, it might use the empty space inside as a resonant chamber to make noise with, or it might use the empty space inside to help it hear faint sounds. Most likely, the casque is primarily for display. Since the cassowary does communicate with low-frequency booming sounds to attract ...
Thanks to Ella for this week's suggestion. There may not technically be spiders in the Antarctic, but there are mites. A nunatak (note the size of the research vehicles at the bottom left): I don't have any pictures of the Antarctic mites, so here are some red velvet mites, although they're giants compared to their Antarctic cousins: Show transcript: Welcome to Strange Animals Podcast. I’m your host, Kate Shaw. This week we’re going to have a short episode, because I get my second Covid-19 vaccine on the Thursday before this episode goes live and I want to have the episode all finished before then. That way if I feel bad afterwards I can rest. Thanks to Ella for this week’s suggestion! Back in episode 90, about some mystery spiders, I mentioned that spiders live everywhere in the world except Antarctica. Well, guess what. Ella sent me some links about spiders that live in…Antarctica! Antarctica is a landmass at the South Pole, specifically a continent about twice the size of Australia. It looks bigger than it really is because ice projects out from the land and is only supported by water, called an ice shelf. It’s not a little bit of ice, either. It’s over a mile thick, or nearly 2 km. The ice is called the Antarctic ice sheet and it covers 98% of the continent. The only places not covered in ice are some rock outcroppings and a few valleys, called dry valleys because they basically get no precipitation, not even snow and certainly not rain. Researchers estimate that it hasn’t rained in these dry valleys in almost two million years. There are no plants, just gravel. There are no animals but some bacterial life that live inside rocks and under at least one glacier. Scientists have used these dry valleys to test equipment designed for Mars. This is not a hospitable land. Everything that lives in Antarctica is considered an extremophile. That doesn’t mean there’s no life in Antarctica, though, just that it’s only found in a few places, mostly along the coast or on nearby islands. Emperor penguins and Adelie penguins, several species of seal, and some sea birds live at least part of their lives in and around Antarctica, as do some whales. There are lichens, algae, and a few low-growing plants like liverwort and moss. And there are some invertebrates, although not very many and not large at all. The largest is a flightless midge that only grows 6 mm long. But what we’re interested in today are mites found only in Antarctica. We talked about mites in episode 186 when we learned about the red velvet mite. Mites are arachnids, although they’re not technically spiders, but frankly we’re just quibbling at this point. It has eight legs and is in the class Arachnida, so I say there are spiders in Antarctica. Or close enough. There are 30 species of mite in Antarctica. They mostly live on islands throughout the Antarctic peninsula, which sticks out from one side of the continent like a tail pointing at the very tip of South America. All the mites eat moss, algae, and decomposing lichens. They’re also teeny-tiny, less than a millimeter long. One type of mite is found on the mainland of East Antarctica instead of just on islands. It’s called Maudheimia and it only lives on big rock outcroppings that stick up through the ice. These rocks are called nunataks and are covered with lichens. But nunataks are far apart, sometimes hundreds of miles apart, and the mites are so tiny they’re just about microscopic. How did they get from one nunatak to the next? To find out, we have to learn some history about Antarctica. It hasn’t always been at the South Pole. It was once part of the supercontinent Gondwana, and 500 million years ago it was right smack on the equator. You know, tropical. As the centuries passed and the continents continued their slow, constant dance around the Earth, Gondwana drifted southward and broke apart. Antarctica was still connected to Australia on one side and South America on th...
This week let's learn about a mystery panda and a few small panda mysteries! Join our mailing list! Further Reading: Mystery of the brown giant panda deepens The Qinling panda is not like other pandas: The giant panda is subtly different from the Qinling panda. Can you spot the difference? Show transcript: Welcome to Strange Animals Podcast. I’m your host, Kate Shaw. I usually like to shake things up from week to week, but April has turned into mammal month. We’ve got another interesting mammal this week, a panda that until recently was a mystery. But first! A quick correction from last week. Pranav emailed to let me know that I got infrasound and ultrasound mixed up. Tarsiers communicate and hear in ultrasound. Infrasound is below human hearing while ultrasound is above. We’ve talked about the giant panda before in episodes 42 and 109. Pretty much everyone is familiar with the panda because it looks so cuddly. It’s a bear, but unlike every other bear it eats plants. Specifically, it eats bamboo, although it will also sometimes eat bird eggs and small animals. It’s mostly white but its ears are black, it has black patches around and just under its eyes, and its legs are black. It also has a strip of black around its body at about its shoulders. But what if I told you there was another kind of panda that wasn’t black and white? I’m not talking about the red panda, which is not actually very closely related to bears. I’m talking about the Qinling panda. Qinling refers to the Qinling Mountains in central China, which is where the pandas live. There aren’t many of them, although to be fair there aren’t many pandas in the wild at all. Estimates vary from around 200 to 300 Qinling pandas in the wild. They live in two big nature reserves, and there’s only one in captivity. The reason you’ve probably never heard of the Qinling panda is because until 2005, no one realized it wasn’t a regular panda with slightly different color fur. In 2005 a genetic study determined that the Qinling panda has been isolated from other pandas for at least 12,000 years and is different enough that it’s considered a subspecies of panda. The Qinling panda is sometimes called the brown panda or sepia panda, because instead of being black and white, it’s brown and brownish-white. Where an ordinary panda has white fur, the Qinling panda has light tan or light brown fur. Where an ordinary panda has black fur, the Qinling panda has brown fur. It’s not dark brownish-black, just a medium brown. It also has a smaller, rounder head than other pandas. In 1989, before anyone realized the Qinling panda was a different subspecies, a female was captured as a mate for a captive giant panda. The pair had a baby who looked like an ordinary black and white panda cub, at least for the first four months of his life. At four months old his fur started to look more and more brown, until he was a brown and pale brown panda instead of a black and white panda. Unfortunately, the baby didn’t survive to grow up, and the mother panda died in 2000. The Qinling panda lives in high elevations and eats bamboo, just like other pandas. Because there are so few of them, and because they’re hard to keep in captivity and hard to find in the wild, we still don’t know a whole lot about them. We do know that the Qinling panda tends to have more tooth problems than regular pandas, sometimes losing its teeth or just fracturing them. This may be due to inbreeding, but it may be genetic. The Qinling panda’s genetic profile indicates that it has more traits in common with the ancestor it shares with giant pandas than the giant panda does. In the time that the populations have been separate, the giant panda has evolved more quickly than the Qinling panda. The giant panda’s teeth may be better adapted to its diet than the Qinling panda’s teeth are. Now that I’ve told you that the Qinling panda has a different color coat than giant pandas,
Thanks to Phoebe for suggesting the tarsier, this week's strange and interesting primate! Further Reading: Decoding of tarsier genome reveals ties to humans Long-lost 'Furby-like' Primate Discovered in Indonesia Tarsiers look like weird alien babies: A tarsier nomming on a lizard: A tarsier nomming on an insect: The pygmy tarsier and someone's thumb: There's probably not much going on in that little brain: Show Transcript: Welcome to Strange Animals Podcast. I’m your host, Kate Shaw. This week we’re looking at a weird and amazing little primate, but it’s not a monkey or ape. It’s the tarsier, with thanks to Phoebe who suggested it. It’s pronounced tarsiAY or tarsiER and both are correct. The tarsier is such a little mess that until relatively recently scientists weren’t even completely certain it was a primate. A 2016 genetic study determined for sure that it is indeed a primate even though it differs in many ways from all other primates alive. For instance, it’s a carnivore. Most primates are herbivores and some are omnivores, including humans and chimpanzees, but only the tarsier is an obligate carnivore. That means it has to eat meat and only meat, whether it’s invertebrates, birds, reptiles, or small mammals like rodents. Scientists divide primates into two groups informally, into wet-noses and dry-noses. Wet-nose doesn’t refer to a nose that’s runny but to a nose that stays moist, like a dog’s nose. This splits along the same lines as simians and prosimians, another way to group primates. Humans and other apes, along with monkeys, are simians, and also dry-noses. If you’re not sure if that’s accurate, just touch the end of your nose. Make sure you’re not standing in the rain or just got out of the bathtub, though. All other primates are wet-noses, and also prosimians, except for the tarsier. The tarsier is sort of in between. It’s grouped with the wet-nose primates, but it turns out to be more closely related to the dry-nose primates than the wet-noses. Also, its nose is actually dry. One interesting difference between prosimians and simians concerns vitamin C. Vitamin C is found in a lot of foods, but especially in fruit and vegetables. If you don’t have any vitamin C in your diet, you will eventually die of scurvy like an old pirate, so make sure to eat plenty of fruit and vegetables. But most animals don’t need to eat foods containing vitamin C because their bodies already produce the vitamin C they need. Humans, apes, and monkeys have to worry about scurvy but prosimians don’t. But the tarsier does need vitamin C even though it’s a prosimian. A lot of researchers think the tarsier should be grouped with the simians, not prosimians. The tarsier currently lives only in southeast Asia, mostly on forested islands, although tarsier fossils have been found throughout Asia, Europe, and North America. Genetic studies also indicate it probably started evolving separately from other primates around 55 million years ago in what is now China. As it happens, we have a fossil that appears to be an early ancestor of the tarsier. Archicebus achilles was discovered in 2003 and studied for an entire decade before it was described in 2013, and it lived about 55 million years ago in what is now central China. It looks a lot like a tiny tarsier, but with smaller eyes that suggest it was active during the day. Its feet were shaped like a monkey’s, though, not like a tarsier’s feet. It probably only weighed about an ounce, or 28 grams. That’s about the same weight as a pencil. It had sharp little teeth and probably ate insects. So far the 2003 specimen is the only one found, but it’s remarkably complete so researchers have been able to learn a lot about it. If I’d been one of the scientists studying it, there is no way I could have waited ten whole years to tell people about it. I’d have studied it for like six months and then thought, “Okay, good enough,
So many interesting hoofed animals in this episode, so many awesome suggestions! Thanks to Page, Elaine, Pranav, Richard E., Richard from NC, and Llewelly! Further Reading: Meet the Takin: The Largest Mammal You've Never Heard Of New hope for the elusive okapi, the Congo's mini giraffe The Resurrection of the Arabian Oryx Eucladoceros was not messing around with those antlers: Megaloceros and Thranduil's elk in the Hobbit movies. COINCIDENCE? The stag-moose. What can I say? This thing is AWESOME: Hoplitomeryx. Can you have too many horns? No, no you cannot: The gerenuk, still beautiful but freaky-looking: The golden takin looking beautiful [pic from the article linked above]: The elusive okapi: Okapi bums [pic from the article linked above]: The giraffe being really tall and a baby giraffe being somewhat less tall: A giraffe exhibiting dwarfism but honestly, he is still plenty tall: The Arabian oryx is just extra: The weird, weird tusks of the babirusa. Look closely: Show Transcript: Welcome to Strange Animals Podcast. I’m your host, Kate Shaw. Back in episode 116, we talked about some amazing hoofed animals. This week we’re going to look at some more amazing hoofed animals that you may have never heard about. Some are extinct but some are running around out there looking awesome even as we speak! Thanks to Page, Elaine, Pranav, Richard E., Richard from NC, and Llewelly for their suggestions! If you’re a Patreon subscriber you may recognize part of the end of the episode as largely from a Patreon episode, by the way. Let’s start with an extinct deer with amazing antlers. Llewelly suggested it, or more accurately replied to a Twitter conversation mentioning it. That counts as a suggestion. It’s been a while but I think the conversation was about the Hobbit movies. Eucladoceros was a deer the size of a moose but with much weirder antlers. We’re not talking about the Megaloceros, often called the Irish elk, although it was distantly related. Eucladoceros’s antlers were much different. They branched up and out but were spiky like an ordinary deer’s antlers instead of palmate like a moose’s or Megaloceros’s antlers. But they were seriously big, with up to twelve points each and over five and a half feet across, or 1.7 meters. The deer itself stood just under 6 feet tall at the shoulder, or 1.8 meters. It’s often called the bush-antlered deer because the antler’s many points look like the branches of a bush. Eucladoceros lived in Eurasia but we’re not completely sure when it went extinct or why. We don’t really know that much about it at all, in fact, which is surprising because it was such a big animal. It was one of the earliest deer with branching antlers and it probably went extinct before humans encountered it, but we don’t know that for sure either. Another deer relation is a gigantic animal called the stag moose that lived at the very end of the Pleistocene, or ice age, until around 13,000 years ago. It probably looked a lot like a huge, muscular deer more than a moose, but had moose-like antlers that grew up to 6 1/2 feet across, or 2 meters. The animal itself stood almost six feet tall at the shoulder, or 1.8 m, which is about the size of the modern moose. It lived in northern North America until melting glaciers allowed other animals to migrate into the area, and the modern moose outcompeted its cousin. Early deer and deer relations looked a lot different from the deer we’re familiar with today. For instance, Hoplitomeryx. It was a ruminant and therefore related to modern deer, but while it probably looked a lot like a deer, it didn’t have antlers. It had horns. Antlers grow every year from the skull and the animal sheds them later, usually after breeding season. Horns are permanent, usually made of a bony core with a keratin sheath over it. Hoplitomeryx lived around 11 to 5 million years ago in ...
This week we're going to look at three small mystery animals! Well, the mysteries are small. The animals are not particularly small. Further Reading: Long-Extinct Gibbon Found Inside Tomb of Chinese Emperor's Grandmother Ancient Egypt's Mona Lisa? An elaborately drawn extinct goose, of course A case of mistaken identity for Australia's extinct big bird Bones of a mystery gibbon found in a noblewoman's tomb: Gibbons painted about a thousand years ago by artist Yi Yuanji: A couple of gibbons at MAX FLUFF: The mystery goose painting (left) compared with a modern version of the painting (middle) and a red-breasted goose (right): All the geese from the painting: A red-breasted goose, not historically known from Egypt: The mystery bird rock art: An emu (with babies): Genyornis compared to a human: Genyornis leg bones compared to emu leg bones (right), but on left is a comparison of a so-called Genyornis (actually not) egg and an emu egg: A couple of megapodes in their egg field: Show transcript: Welcome to Strange Animals Podcast. I’m your host, Kate Shaw. We’re long overdue for an episode about a mystery animal, so this week let’s look at not one, not two, but three mysteries! They’re all small scientific mysteries, not big spooky ones, but I think you’ll find them interesting. We’ll start at an archaeological dig in China. In 2004, archaeologists excavated a noblewoman’s tomb in northwestern China, which they dated to about 2,200 to 2,300 years old. The tomb might have been for a woman called Lady Xia, who was the grandmother of the first emperor of China. So, kind of a big deal. The archaeologists discovered twelve pits in the tomb, and each pit contained the skeletons of various animals, some of them domesticated animals but some of them wild. Having a private menagerie was a status symbol back then, as it sometimes has been in other cultures around the world. In pit #12, they found remains of a leopard, a black bear, a crane, a lynx, and a type of small ape called a gibbon. The gibbon remains were a surprise, because today all species of gibbon in China live only in the very southern areas and are critically endangered by habitat loss and hunting. Either a gibbon had been transported hundreds of miles over difficult terrain 2,300 years ago, or gibbons lived in the area. Gibbons are small apes and there are 16 species alive today. They all live in southern Asia. We talked about the siamang in episode 76, and the siamang is a type of gibbon. Many gibbons, including the siamang, have inflatable resonant chambers in the throat to amplify their calls, but all gibbons make loud, often musical sounds to communicate with each other. They spend most of the time in treetops and mostly eat fruit, along with other plant material. Because this part of northwestern China is subtropical, and because it’s been so long since the animals died, the skeletons aren’t complete. The only gibbon bones left were part of a cranium and mandible. Obviously, scientists had to be careful with the bones and couldn’t run any tests that might damage them. They made a 3D scan of the bones and used the scan to compare the gibbon’s skull and jaw with those of living species of gibbon, to determine what species it was. It turned out that not only was it a species unknown to science, it was different enough from other gibbons that it belonged in its own genus. According to experts in Chinese history and literature, gibbons were considered noble animals that often appeared in paintings and poetry. Various species of gibbon lived throughout much of China until around the 14th century. After the 14th century, though, habitat loss and hunting drove the gibbons farther south until now there are almost no gibbons left in China. Lady Xia’s pet gibbon is the first species known that definitely went extinct in the modern era,
Let's learn about some of the biggest sharks in the sea--but not sharks that want to eat you! Further reading: 'Winged' eagle shark soared through oceans 93 million years ago Manta-like planktivorous sharks in Late Cretaceous oceans Before giant plankton-eating sharks, there were giant plankton-eating sharks An artist's impression of the eagle shark (Aquilolamna milarcae): Manta rays: A manta ray with its mouth closed and cephalic fins rolled up: Pseudomegachasma's tooth sitting on someone's thumbnail (left, photo by E.V. Popov) and a Megachasma (megamouth) tooth on someone's fingers (right): The megamouth shark. I wonder where its name came from? The basking shark, also with a mega mouth: The whale shark: Leedsichthys problematicus (not a shark): Show transcript: Welcome to Strange Animals Podcast. I’m your host, Kate Shaw. This week we’re going to look at some huge, weird sharks, but they’re not what you may expect when you hear the word shark. Welcome to the strange world of giant filter feeders! This episode is inspired by an article in the brand new issue of Science, which you may have heard about online. A new species of shark is described in that issue, called the eagle shark because of the shape of its pectoral fins. They’re long and slender like wings. The fossil was discovered in 2012 in northeastern Mexico, but not by paleontologists. It came to light in a limestone quarry, where apparently a quarry worker found it. What happened to it at that point isn’t clear, but it was put up for sale. The problem is that Mexico naturally wants fossils found in Mexico to stay in Mexico, and the authors of the study are not Mexican. One of the authors has a history of shady dealings with fossil smugglers too. On the other hand, the fossil has made its way back to Mexico at last and will soon be on display at a new museum in Nuevo León. Fossils from this quarry are often extremely well preserved, and the eagle shark is no exception. Sharks don’t fossilize well since a shark’s skeleton is made of cartilage except for its teeth, but not only is the eagle shark’s skeleton well preserved, we even have an impression of its soft tissue. The eagle shark was just slightly shorter than 5 ½ feet long, or 1.65 meters. Its tail looks like an ordinary shark tail but that’s the only ordinary thing about it. The head is short and wide, without the long snout that most sharks have, it doesn’t appear to have dorsal or pelvic fins, and its pectoral fins, as I mentioned a minute ago, are really long. How long? From the tip of one pectoral fin to the other measures 6.2 feet, or 1.9 meters. That’s longer than the whole body. Researchers think the eagle shark was a filter feeder. Its mouth would have been wide to engulf more water, which it then filtered through gill rakers or some other structure that separated tiny animals from the water. It expelled the water through its gills and swallowed the food. The eagle shark would have been a relatively slow swimmer. It glided through the water, possibly flapping its long fins slowly in a method called suspension feeding, sometimes called underwater flight. If this makes you think of manta rays, you are exactly correct. The eagle shark occupied the same ecological niche that manta rays do today, and the similarities in body form are due to convergent evolution. Rays and sharks are closely related, but the eagle shark and the manta ray evolved suspension feeding separately. In fact, the eagle shark lived 93 million years ago, 30 million years before the first manta remains appear in the fossil record. The eagle shark lived in the Western Interior Seaway, a shallow sea that stretched from what is now the Gulf of Mexico straight up through the middle of North America. Because it’s the only specimen found so far, we don’t know when it went extinct, but researchers suspect it died out 65 million years ago at ...
Thanks to Lorenzo and Page for suggestions used in this week's episode, and a belated thanks to Ethan for last week's episode! Let's learn about some of the cutest invertebrates out there! Further reading: Photosynthesis-like process found in insects Mystery of the Venezuelan Poodle Moth Further viewing: Dr. Arthur Anker's photos from his Venezuela trip, including the poodle moth The pea aphid, red morph and regular green So many ladybugs: The sea bunny is a real animal, but it's not a real bunny: A larval sea bunny is SO TINY that fingertip looks like it's the size of a BUILDING: The bobtail squid not hiding (left) and hiding (right): The bobtail squid is SO CUTE I MIGHT DIE: The Venezuelan poodle moth: Not a Venezuelan poodle moth--it's a female muslin moth from Eurasia: Not a Venezuelan poodle moth--it's a silkworm moth from Asia: The dot-lined white moth: Show transcript: Welcome to Strange Animals Podcast. I’m your host, Kate Shaw. This week I promised we’d cover a cute, happy animal to make up for last week’s extinction event episode, but instead of mammals let’s look at some cute invertebrates! One of them is even a mystery animal. Thanks to Page and Lorenzo for suggesting two of the animals we’re going to cover today! We’ll start with Lorenzo’s suggestion, the pea aphid. Years and years ago I spent a slow day at work making a list of cute foods with a coworker, and peas were at the top of the list. Blueberries were second and I don’t remember the rest of the list. Generally, cuteness depended on how small the food was and how round. Aphids are really small and peas are round, so the pea aphid has to be adorable. The pea aphid, however, is not round. It’s shaped sort of like a tiny pale-green teardrop with long legs, long antennae, and teeny black dots for eyes. It’s actually kind of big for an aphid, not that that’s saying much since it only grows 4 mm long at most. It’s called the pea aphid because it likes to live on pea plants, although it’s also happy on plants related to peas, such as beans, clover, and alfalfa. Cute as it is, farmers and gardeners do not like the pea aphid because it eats the sap of the plants it lives on, which can weaken the plant and can spread plant diseases. During most of the year, all pea aphids are females. Each adult produces eggs that don’t need to be fertilized to hatch, but instead of laying her eggs like most insects, they develop inside her and she gives birth to live babies, all of them female. An aphid can have up to 12 babies a day, called nymphs, and the nymphs grow up in about a week or a little longer. Then they too start having babies. Even though lots of other insects and other animals eat aphids, as you can see, they will always be numerous. As the summer turns to fall and the days become shorter, some of the baby aphids are born with wings. Some are also born male, and sometimes the males also have wings, although they might not have mouths. These males and winged females mate and the females fly off to lay their eggs on clover and alfalfa plants, assuming they aren’t already on clover or alfalfa plants. The eggs don’t hatch until spring, and all the resulting nymphs are female. Sometimes winged females are born if the plants where the aphids live get too crowded. The winged females can fly away and find new plants. If you’ve ever had a garden, you’re probably familiar with aphids. They spend most of the time on the undersides of leaves, drinking sap through specialized mouthparts called stylets. You may also have noticed that when you try to smush the aphids, all of them immediately drop to the ground. This protects them not just from being smooshed by a gardener’s thumb, but from being eaten along with the leaves when a deer or other animal browses on the plants where they live. Sometimes, instead of being leaf green,
It's the next in our short series of episodes about mass extinctions! Don't worry, it won't be boring, because we're going to learn about a lot of weird ancient fish too. Further reading: Titanichthys: Devonian-Period Armored Fish was Suspension Feeder Behind the Scenes: How Fungi Make Nutrients Available to the World Dunkleosteus was a beeg feesh with sharp jaw plates that acted as teeth: Titanichthys was also a beeg feesh, but it wouldn't have eaten you (picture from the Sci-News article linked above): Pteraspis: NOSE HORN FISH: Cephalaspis had no jaws so it couldn't chomp you: Bothriolepis kind of looked like a fish in a mech suit: Show transcript: Welcome to Strange Animals Podcast. I’m your host, Kate Shaw. Here’s the second in our small series of episodes about extinction events, this one the Late Devonian extinction. We’ll also learn about some weird and amazing fish that lived during this time, and a surprising fact about ancient trees. The Devonian period is often called the Age of Fish because of the diversity of fish lineages that arose during that time. It lasted from roughly 420 million years ago to 359 million years ago. During the Devonian, much of the earth’s landmasses were smushed together into the supercontinent Gondwana, which was mostly in the southern hemisphere, and the smaller continents of Siberia and Laurussia in the northern hemisphere. The world was tropically warm, ocean levels were high, and almost all animal life lived in the oceans. Some animals had adapted to living on land at least part of the time, though, and plants had spread across the continents. The first insects had just evolved too. Shallow areas of the ocean were home to animals that had survived the late Ordovician extinctions. There were lots of brachiopods, bivalves, crinoids, trilobites, and corals. Eurypterids were still thriving and ammonites lived in deeper water. But while all these animals are interesting, we’re mainly here for the fish. The fish of the Devonian were very different from modern fish. Most had armor. Way back in episode 33 we talked about the enormous and terrifying dunkleosteus, which lived in the late Devonian. It might have grown up to 33 feet long, or 10 meters. Since we still don’t have any complete specimens, just head plates and jaws, that’s an estimate of its full size. However long it grew, it was definitely big and could have chomped a human in half without any trouble at all. It’s probably a good thing mammals hadn’t evolved yet. Instead of teeth, dunkleosteus had jaw plates with sharp edges and fanglike projections that acted as teeth. Another huge fish from the Devonian is called titanichthys, which might have grown as long as dunkleosteus or even bigger, but which was probably not an apex predator. Its jaw plates were small and blunt instead of sharp, which suggests it wasn’t biting big things. It might not have been biting anything. Some researchers think titanichthys might have been the earliest known filter feeder, filtering small animals from the water by some mechanism we don’t know about yet. Filter feeders use all sorts of adaptations to separate tiny food from water, from gill rakers to baleen plates to teeth that fit together closely, and many others. A study published in 2020 compared the jaw mechanisms of modern giant filter feeders (baleen whales, manta rays, whale sharks, and basking sharks) to the jaw plates of titanichthys, as well as the jaw plates of other placoderms that were probably predators. Titanichthys’s jaws are much more similar to those of modern filter feeders, which it isn’t related to at all, than to fish that lived at the same time as it did and which it was related to. Titanichthys and dunkleosteus were both placoderms, a class of armored fish. That wasn’t unusual, actually. In the Devonian, most fish ended up evolving armored plates or thick scales.
Thanks to Nicholas for this week's suggestion! Let's learn about the Australian stingless bee and its relatives! Listen to BewilderBeasts if you want more fun, family-friendly animal facts! Further reading/watching: Australian Stingless Bees Women Work to Save Native Bees of Mexico (I really recommend the short video embedded on this page! It's utterly charming!) House of the Royal Lady Bee: Maya revive native bees and ancient beekeeping A Maya beekeeper's hut and some Central/South American stingless bees (pictures from the last link, above): Stingless bees build their combs in a spiral shape: An Australian stingless bee collecting nectar and pollen: Show transcript: Welcome to Strange Animals Podcast. I’m your host, Kate Shaw. Last year Nicholas emailed me with a correction to episode 183 and a suggestion. In that episode I said that only honeybees make honey, but Nicholas pointed out that the Australian stingless bee also makes honey. In fact, he keeps some of these bees himself! So let’s learn about Tetragonula carbonaria and its close relations, as well as some other interesting bee information! Stingless bees don’t just live in Australia. Different species live in parts of Australia, Africa, Asia, and Central and South America. Most produce honey, although not very much of it compared to the European honeybee. They don’t sting but some species will bite. Stingless bees are much smaller than European honeybees. Some look more like a flying ant than a bee unless you look closely. A stingless bee worker only grows around 4 mm long, while a European honeybee worker grows about 15 mm long. Different species have different markings, but Tetragonula carbonaria, which is sometimes called the sugarbag bee, is black all over. Stingless bees have a lot in common with honeybees, which makes sense because they’re closely related. The stingless bee lives in a social colony with a caste structure of the queen who stays home and lays eggs, male drones that mate with new queens, and infertile female workers. Young worker bees keep the hive clean and take care of the brood, or developing larvae, while older worker bees are the ones who fly out and forage for pollen and nectar. While stingless bees only have one queen laying eggs at any given time, some species will have a few backup queens in case of an emergency. These backup queens don’t produce eggs because they only mate with the drones if the reigning queen dies. In a few species of stingless bee, there’s actually another caste in addition to the ordinary queen, drone, and worker. It’s the soldier caste. Soldier bee larvae get extra food, and they grow to be larger and stronger than other bees to help them guard the colony, especially the hive entrance. Before the stingless bee soldier castes were discovered, no one realized that any bees ever had soldiers, although some ant and termite species have them. The stingless bee builds a nest in tree cavities, preferably in the tops of large trees because that keeps the hive warm and protected. It’s a tropical bee so it needs to stay warm. If any insect or other small animal gets into the hive, the bees can’t sting it because as their name implies, they don’t have working stingers. Instead, they swarm the intruder and attempt to smother it with anything they can find, including wax, resin, and mud. The stingless bee builds honeycombs, but they’re spiral shaped. They’re made from beeswax mixed with resin that the worker bees collect from certain plants. The combs can be yellow like ordinary honeycombs, or they can be black, brown, or reddish. The word honeycomb isn’t actually accurate because it’s not where the bees store honey. The honey is stored in large chambers in the nest called honeypots. The combs are properly called brood combs because they’re used for baby bees. Worker bees fill the cells about three-quarters full of honey and pollen and the queen lays one egg in ...
Thanks to Pranav for his suggestion! Let's find out what the river of giants was and what lived there! Further reading: King of the River of Giants Spinosaurus was a swimming dinosaur and it swam in the River of Giants: A modern bichir, distant relation to the extinct giants that lived in the River of Giants: Not actually a pancake crocodile: A model of Aegisuchus and some modern humans: Show transcript: Welcome to Strange Animals Podcast. I’m your host, Kate Shaw. A while back, Pranav suggested we do an episode about the river of giants in the Sahara. I had no idea what that was, but it sounded interesting and I put it on the list. I noticed it recently and looked it up, and oh my gosh. It’s amazing! It’s also from a part of the world where it’s really hot, as a break for those of us in the northern hemisphere who are sick of all this cold weather. I hope everyone affected by the recent winter storms is warm and safe or can get that way soon. The Sahara is a desert in northern Africa, famous for its harsh climate. Pictures of the Sahara show its huge sand dunes that stretch to the horizon. This wasn’t always the case, though. Only about 5,500 years ago, it was a savanna with at least one lake. Lots of animals lived there and some people too. Before that, around 11,000 years ago, it was full of forests, rivers, lakes, and grasslands. Before that, it was desert again. Before that, it was forests and grasslands again. Before that, desert. The Sahara goes through periodic changes that last around 20,000 years where it’s sometimes wet, sometimes dry, caused by small differences in the Earth’s tilt which changes the direction of the yearly monsoon rains. When the rains reach the Sahara, it becomes green and welcoming. When it doesn’t, it’s a desert. Don’t worry, we only have 15,000 more years to wait until it’s nice to live in again. This wet-dry-wet pattern has been repeated for somewhere between 7 and 11 million years, possibly longer. Some 100 million years ago, though, the continents were still in the process of breaking up from the supercontinent Gondwana. Africa and South America were still close together, having only separated around 150 million years ago. The northern part of Africa was only a little north of the equator and still mostly attached to what is now Eurasia. Near the border of what is now Morocco and Algeria, a huge river flowed through lush countryside. The river was home to giant animals, including some dinosaurs. Their fossilized remains are preserved in a rock formation called the Kem Kem beds, which run for at least 155 miles, or 250 km. A team of paleontologists led by Nizar Ibrahim have been working for years to recover fossils there despite the intense heat. The temperature can reach 125 degrees Fahrenheit there, or 52 Celsius, and it’s remote and difficult to navigate. For a long time researchers were confused that there were so many fossils of large carnivores associated with the river, more than would be present in an ordinary ecosystem. Now they’ve determined that while it looks like the fossils were deposited at roughly the same time from the same parts of the river, they’re actually from animals that lived sometimes millions of years apart and in much different habitats. Bones or even fossils from one area were sometimes exposed and washed into the river along with newly dead river animals. This gives the impression that the river was swarming with every kind of huge predator, but it was probably not quite so dramatic most of the time. Then again, there were some really fearsome animals living in and around the river in the late Cretaceous. One of the biggest was spinosaurus, which we talked about in episode 170. Spinosaurus could grow more than 50 feet long, or 15 m, and possibly almost 60 feet long, or 18 m. It’s the only dinosaur known that was aquatic, and we only know it was aquatic because of the fossils found in the Kem Kem beds...
This week let's venture into the ocean and learn about the fin whale! Further reading: The songs of fin whales offer new avenue for seismic studies of the oceanic crust Fin whales' big gulp The fin whale can hold a whole lot of water in its mouth (illustration from the second article linked above): A fin whale underwater. Look at that massive tail. That's pure muscle: A fin whale above water. It's like a torpedo: Show transcript: Welcome to Strange Animals Podcast. I’m your host, Kate Shaw. It’s been too long since we had an episode about whales. Yes, okay, two weeks ago we talked about a couple of newly discovered whales, but I want to really learn about a particular whale. So this week, let’s look at the fin whale. The fin whale is a baleen whale that’s only a little less enormous than the blue whale. The longest fin whale ever reliably measured was 85 feet long, or just a hair shy of 26 meters, but there are reports of fin whales that are almost 90 feet long, or a bit over 27 meters. An average American school bus is half that length, so a fin whale is as long as two school buses. Even a newborn fin whale calf is enormous, as much as 21 feet long, or 6.5 meters. Females are on average larger than males. It’s a long, slender whale that’s sometimes called “the greyhound of the sea,” because it’s also really fast. It can swim up to 29 mph, or 46 km/hour, and possibly faster. If that doesn’t sound too fast, consider that the Olympic gold-medal swimmer Michael Phelps topped out at about 4.7 miles per hour, or 7.6 km/h. Like other baleen whales, the fin whale has a pair of blowholes instead of just one. On its underside, it has up to 100 grooves that extend from its chin down to its belly button. Yes, whales have belly buttons. They’re placental mammals, and all mammals have belly buttons because that’s where the umbilical cord is attached when a developing baby is in its mother’s womb. I don’t know what a whale’s belly button looks like. Also, the proper term for belly button is navel, and if you’re wondering, that’s where navel oranges get their name, because they have that weird thing on one end that looks like a belly button. It’s not, though. I don’t know what it is. You’ll have to find a podcast called Strange Plants to explain it. Anyway, the grooves on the fin whale’s underside act as pleats, or accordion folds. Other baleen whales have these pleats too. A baleen whale eats tiny animals that it filters out of the water through its baleen plates, which are keratin structures in its mouth that take the place of teeth. The baleen is tough but thin and hangs down from the upper jaw. It’s white and looks sort of like a bunch of bristles at the end of a broom. The whale opens its mouth wide while lunging forward or downward, which fills its huge mouth with astounding amounts of water. As water enters the mouth, the skin stretches to hold even more, until the grooves completely flatten out. The water it can hold in its mouth is about equal to the size of a school bus. Technically, though, a lot of that water isn’t in the whale’s mouth. It’s in a big pocket between the body wall and the blubber underneath the skin. The ballooning out of the pocket stretches the nerves in the mouth and tongue to more than twice their length, and then the nerves have to fold back up tightly after the water is pushed out. The nerves fold in a complicated double layer to minimize damage during all this stretching. After the whale fills its mouth with water, it closes its jaws, pushing its enormous tongue up, and forces all that water out through the baleen. Any tiny animals like krill, copepods, small squid, small fish, and so on, get trapped in the baleen. It can then swallow all that food and open its mouth for another big bite. Even more amazing, this whole operation, from opening its mouth to swallowing the food, only takes six to ten seconds. Because it only eats small animals,
Does the Shreve's lightbulb lizard really emit light? (Hint: sort of.) Let's find out! Further reading: The Lightbulb Lizard of Benjamin Shreve Shreve's lightbulb lizard, looking pretty ordinary really: A web-footed gecko in moonlight: A Jamaican gray anole showing off his dewlap: Show Transcript: Welcome to Strange Animals Podcast. I’m your host, Kate Shaw. This week let’s learn about an interesting reptile with a mystery that’s mostly solved, but still really weird. It’s called Shreve’s lightbulb lizard. The story of this little lizard starts in 1937, when zoologist Ivan Sanderson was collecting freshwater crabs on a mountaintop in Trinidad. They were probably mountain crabs, also called the manicou crab, which is actually a pretty astonishing animal on its own. It’s a freshwater crab that doesn’t need to migrate to the ocean to release its eggs into the water. Instead, the female carries her eggs in a pouch in her abdomen. The eggs hatch into miniature crabs instead of larvae, and they stay in her pouch until they’re old enough to strike out on their own. The mountains of Trinidad are made of limestone, which means they’re full of caves, and Sanderson was reportedly catching crabs in an underground pool or stream. He noticed a flash of light in the darkness and naturally went to find what had made it. All he found was a little lizard hiding under a ledge. It looked kind of like a brown skink and was pretty boring, but when the lizard turned its head, Sanderson saw a flash of dotted light down both its sides. When he caught the lizard and examined it while it was sitting in his hand, it flashed its lights again. Sanderson knew he’d found something extraordinary, because lizards don’t bioluminesce. We still don’t know of any terrestrial vertebrate that emits light. Lots and lots of marine animals do, and some terrestrial invertebrates like lightning bugs and glow-worms, but no terrestrial vertebrates. Sanderson took the lizard back to his camp, where he and his team observed it in different situations to see if it would light up again. They moved it to warmer areas and colder ones, made loud noises nearby, even tickled it, and they did indeed see it light up a few times. The light came from a row of tiny eyespots along its sides, from its neck to its hips. It had one row of these spots on each side, and each spot looked like a tiny white bead. The greenish-yellow flashes of light seemed to shine through the spots, as Sanderson said, like “the portals on a ship.” Sanderson sent the lizard to The British Museum in London where another zoologist studied it and discovered that it was actually a known species, but apparently very rare. Only two specimens had ever been caught, one a juvenile and one an adult female. The lizard Sanderson caught was male, and it turns out that only adult males have these little eyespots. Sanderson later caught seven more of the lizards. Let’s jump forward a bit and get a better idea of what these lizards look like. Shreve’s lightbulb lizard grows around 5 inches long at most, or 13 cm, not counting its long tail. It has short legs, a pointy nose, and broad, flat scales on its back and sides. It’s mostly brown in color. It lives in high elevations in the Caribbean island of Trinidad and Tobago, which is just off the coast of Venezuela in South America. It prefers cool climates, unlike most reptiles, and while it turns out that it’s not actually very rare, it’s also hard to study because it lives in such remote areas, so we don’t know much about it. It may be nocturnal and it may be semi-aquatic. It certainly lives along mountain streams, where it eats insects and other small animals. Now, we have mentioned Ivan Sanderson a number of times in past episodes, and you may remember me sounding pretty skeptical about some of his cryptozoological claims. But Sanderson was a zoologist with a good reputation as a field scientist,
Here's a 2020 retrospective episode that looks at the bright side of the year! Thanks to Page for the suggestion! Let's learn about some animals discovered in 2020 (mostly). Further reading: Watch This Giant, Eerie, String-Like Sea Creature Hunt for Food in the Indian Ocean Rare Iridescent Snake Discovered in Vietnam An intrusive killer scorpion points the way to six new species in Sri Lanka What may be the longest (colony) animal in the world, a newly discovered siphonophore: New whale(s) just dropped: A newly discovered pygmy seahorse: A newly discovered pipefish is extremely red: So tiny, so newly discovered, Jonah's mouse lemur: The Popa langur looks surprised to learn that it's now considered a new species of monkey: The newly rediscovered devil eyed frog. I love him: The newly discovered Lilliputian frog looks big in this picture but is about the size of one of your fingernails: This newly discovered snake from Vietnam is iridescent and shiny: A new giant scorpion was discovered in Sri Lanka and now lives in our nightmares: The Gollum snakehead was technically discovered in 2019 but we're going to let that slide: Show transcript: Welcome to Strange Animals Podcast. I’m your host, Kate Shaw. Very recently, Page suggested the topic “animals discovered in 2020.” Since I was already thinking of doing something like this, I went ahead and bumped his suggestion to the top of the list and here we go! You’d think that with so many people in the world, there wouldn’t be too many more new animals to discover, especially not big ones. But new scientific discoveries happen all the time! Many are for small organisms, of course, like frogs and insects, but there are still unknown large animals out there. In fact, 503 new animals were officially discovered in 2020. Every single one is so amazing that I had a hard time deciding which ones to highlight. In most cases we don’t know much about these new animals since studying an animal in the wild takes time, but finding the animal in the first place is a good start. Many of the newly discovered species live in the ocean, especially the deep sea. In April of 2020, a deep-sea expedition off the coast of western Australia spotted several dozen animals new to science, including what may be the longest organism ever recorded. It’s a type of siphonophore, which isn’t precisely a single animal the way that, say, a blue whale is. It’s a colony of tiny animals, called zooids, all clones although they perform different functions so the whole colony can thrive. Some zooids help the colony swim, while others have tiny tentacles that grab prey, and others digest the food and disperse the nutrients to the zooids around it. Many siphonophores emit bioluminescent light to attract prey. Some siphonophores are small but some can grow quite large. The Portuguese man o’ war, which looks like a floating jellyfish, and which we talked about way back in episode 16, is actually a type of siphonophore. Its stinging tentacles can be 100 feet long, or 30 m. Other siphonophores are long, transparent, gelatinous strings that float through the depths of the sea, snagging tiny animals with their tiny tentacles, and that’s the kind this newly discovered siphonophore is. The new siphonophore was spotted at a depth of about 2,000 feet, or 625 meters, and was floating in a spiral shape. The scientists estimated that the spiral was about 49 feet in diameter, or 15 meters, and that the outer ring alone was probably 154 feet long, or 47 meters. The entire organism might have measured 390 feet long, or almost 119 meters. It’s been placed into the genus Apolemia although it hasn’t been formally described yet. Another 2020 discovery off the coast of Australia was an entire coral reef a third of a mile tall, or 500 meters, and almost a mile across, or 1.5 km. It’s part of the Great Barrier Reef but isn’t near the...
Thanks to Phoebe for suggesting the quokka and the wombat, two of the cutest, happiest-looking animals in Australia! Further Reading: Viral stories of wombats sheltering other animals from the bushfires aren't entirely true Satellites reveal the underground lifestyle of wombats Giant Wombat-Like Marsupials Roamed Australia 25 Million Years Ago Further Listening: Animals and Ultraviolet Light (unlocked Patreon episode) The adorable quokka with a nummy leaf and a joey in her pouch: Quokka (left) and my chonky cat Dracula (right) Some quokka selfies showing quokka smiles. That second picture really shows how small the quokka actually is: Wombats! A wombat and its burrow entrance: A wombat mom with her joey peeking out of the rear-facing pouch: Golden wombats. All they need is some Doublemint Gum: Two (dead, stuffed) wombats glowing under ultraviolet light: Show Transcript: Welcome to Strange Animals Podcast. I’m your host, Kate Shaw. This week we’re going to look at two super-cute animals from Australia, both of them suggestions by Phoebe. Thank you, Phoebe! Let’s start with the quokka. It’s a marsupial, which as you may recall means that it’s a mammal that gives birth to babies that aren’t fully formed yet, and the babies then finish developing in the mother’s pouch. It’s related to kangaroos and wallabies but is quite small, around the size of an ordinary domestic cat. It’s kind of a chonk, though, which means it’s probably closer in size to my big chonk cat Dracula. It’s shaped roughly like a little wallaby or kangaroo but with a smaller tail and with rounded ears, and it’s grey-brown in color. You may have seen pictures of the quokka online, because the reason it’s considered so incredibly cute is because it looks like it’s smiling all the time. If you take a picture of a quokka’s face, it looks like it has a happy smile and that, of course, makes the people who look at it happy too. Those are real pictures, by the way. Because of the way its muzzle and mouth are shaped, the quokka really does look like it’s smiling. This has caused some problems, unfortunately. People who want to take selfies with a quokka sometimes forget that they’re wild animals. While quokkas aren’t very aggressive and are curious animals who aren’t usually afraid of people, they can and will bite when frightened. The Nature Conservancy of Australia recommends that people who want to take a selfie with a quokka arrive early in the morning or late in the evening, since quokkas are mostly nocturnal, and that they let the quokkas approach them instead of following one around. Touching a quokka or giving it food or drink is strictly prohibited, since it’s a protected animal. The quokka lives on a few small islands off the coast of western Australia and a few small forested areas on the mainland. The largest population lives on Rottnest Island, and in fact the island was named by a Dutch explorer who thought the quokkas were rats. It means rat’s nest. The island’s actual name was Wadjemup and it was a ceremonial area for the local Whadjuk Noongar people. Only an estimated 14,000 quokkas live in the wild today, with most of those on Rottnest Island. It used to be much more widespread, but once white settlers arrived and introduced predators like dogs, cats, and foxes, its numbers started to decline. It’s also threatened by habitat loss. It reproduces slowly, since a female only raises one baby a year. A baby quokka is born after only a month, but like other marsupial babies, called joeys, it’s just a little pink squidge when it’s born. It climbs into its mother’s pouch where it stays for the next six months. Once it’s old enough to leave her pouch, it still depends on her milk for a few more months. While she’s raising one baby, though, the mother has other babies still in her womb ready to be born but held in suspended animation.
This week we're on the cutting edge of science, learning about the brand new genetic study of dire wolves that rearranges everything we know about the dire wolf and other canids! Also, a bonus turtle update. Further reading: Dire Wolves Were Not Really Wolves, Genetic Clues Reveal An artist's rendition of dire wolves and grey wolves fighting over a bison carcass (art by Mauricio Anton): The pig-nosed face of the Hoan Kiem turtle, AKA Yangtze giant softshell turtle, AKA Swinhoe's softshell turtle: Show transcript: Welcome to Strange Animals Podcast. I’m your host, Kate Shaw. You may have heard the news this past week about the new study about dire wolves. I thought it would make a great topic for an episode, and we’ll also have a quick update about a rare turtle that’s been in the news lately too. Dire wolves show up pretty often in movies and TV shows and video games and books, because as far as anyone knew until very recently, the dire wolf was an extra big wolf that lived in North America during the Pleistocene until it went extinct around 13,000 years ago. Researchers assumed it was a close cousin of the modern grey wolf. Well, in a brand new study published in Nature literally less than a week ago as this episode goes live, we now have results of a genetic study of dire wolf remains. The results give us surprising new information not just about the dire wolf, but about many other canids. The study started in 2016, when an archaeologist, Angela Perri, who specializes in the history of human and animal interactions, wanted to learn more about the dire wolf. She went around the United States to visit university collections and museums with dire wolf remains, and took the samples she collected to geneticist Kieren Mitchell. Perri, Mitchell, and their team managed to sequence DNA from five dire wolves that lived between 50,000 and 13,000 years ago. Then the team compared the dire wolf genome to those of other canids, including the grey wolf and coyote, two species of African wolf, two species of jackal, and the dhole, among others. To their surprise, the dire wolf’s closest relation wasn’t the grey wolf. It was the jackals, both from Africa, but even they weren’t very closely related. It turns out that 5.7 million years ago, the shared ancestor of dire wolves and many other canids lived in Eurasia. At this point sea levels were low enough that the Bering land bridge, also called Beringia, connected the very eastern part of Asia to the very western part of North America. One population of this canid migrated into North America while the rest of the population stayed in Asia. The two populations evolved separately until the North America population developed into what we now call dire wolves. Meanwhile, the Eurasian population developed into many of the modern species we know today, and eventually migrated into North America too. By the time the gray wolf populated North America, the dire wolf was so distantly related to it that even when their territories overlapped, they avoided each other and didn’t interbreed. We’ve talked about canids in many previous episodes, including how readily they interbreed with each other, so for the dire wolf to remain genetically isolated, it was obviously not closely related at all to other canids at this point. The dire wolf looked a lot like a grey wolf, but researchers now think that was due more to convergent evolution than to its relationship with wolves. Both lived in the same habitats: plains, grasslands, and forests. The dire wolf was slightly taller on average than the modern grey wolf, which can grow a little over three feet tall at the shoulder, or 97 cm, but it was much heavier and more solidly built. It wouldn’t have been able to run nearly as fast, but it could attack and kill larger animals. Its head was larger in proportion than the grey wolf’s and it had massive teeth that were adapted to crush bigger bones.
This week let's learn about two birds of New Guinea, bowerbirds and the Victoria crowned pigeon! Both are beautiful and the bowerbird is kind of weird. Thanks to M Is for Awesome for the suggestion! Further Reading: The Women Who Removed Birds from People's Hats Various bowers made by various species of bowerbird: The golden-fronted bowerbird: Not a bowerbird but a close relation, a dead bird of paradise from New Guinea, decorating an old-timey lady's fancy hat. I would not want to put this on my head: A Victoria crowned pigeon, wearing a built-in fancy hat: A Victoria crowned pigeon baby. Such miniature floof: Show transcript: Welcome to Strange Animals Podcast. I’m your host, Kate Shaw. This week we are finally going to look at some birds of New Guinea, a topic suggested ages ago by M Is for Awesome! There are so many weird and amazing birds in New Guinea that instead of trying to talk about a bunch of them very briefly in one episode, I’m going to make this another ongoing series throughout the year. Every so often we’ll revisit New Guinea (in our minds, anyway) and learn about a few more birds. In this episode we’ll learn some basic information about New Guinea and then learn about two really interesting birds that live there. New Guinea comes up in lots of episodes because so many animals live there. It’s almost the world’s largest island, second only to Greenland. Australia is considered a continent, not an island. New Guinea is actually pretty close to Australia so there’s a lot of overlap between animals that live in Australia and animals that live in New Guinea. A big reason New Guinea has so many animals is its geography. It has everything from ridiculously high mountains with glaciers to lowland rainforests, savannas, wetlands, mangrove forests, rivers, lakes, alpine tundra, and coral reefs off the coast. About the only thing it doesn’t have is a desert. Most of the island is warm and humid with lots of rain. Of course people live in New Guinea too, and have for at least 40,000 years, possibly as long as 60,000 years. Back then, New Guinea was connected to Australia by a land bridge similar to the one that has connected North America with Asia when sea levels were low. Some of the earliest humans to migrate out of Africa settled in New Guinea, and the people there developed agriculture independently of the people who settled in the Middle East. More people arrived much later, only around 3,500 years ago, from parts of Asia. But because the land is so hard to navigate due to the mountains and rivers and so forth, people who moved to a new part of the island were largely isolated from the people in other parts. Some 7,000 languages are spoken on the island right up to the present day, with several hundred more languages once spoken. Unfortunately, as happens so often, after European explorers discovered the island in the 16th century, they decided they would like to have it for themselves. So they took it, which is just rude. The eastern half of the island is now independent as of 1975, called Papua New Guinea, while the western half, usually just called Papua, is now part of Indonesia. Indonesia is an Asian country and unfortunately, they’re being just as bad to the indigenous people of the area as Europeans were. There are still lots of places in New Guinea that scientists haven’t explored, mostly in the mountains, and undoubtedly lots and lots of animals and birds that are completely unknown to science. Some of the animals and birds of the mountains may never have been seen by any person at all. M specifically wanted us to cover bowerbirds, so let’s start with them. Bowerbirds live in Australia and New Guinea along with a few smaller islands, with twenty species known. You may have heard about them before, because a male bowerbird builds what’s called a bower and decorates it with items he selects to attract a female.
Happy new year! This week we'll learn about the oldest mass extinction event, some 450 million years ago, and also sea scorpions. Further reading: Coming up for air: Extinct sea scorpions could breathe out of water, fossil detective unveils Sea scorpions could get really, really big: A fossil Eurypterus: Show transcript: Welcome to Strange Animals Podcast. I’m your host, Kate Shaw. Hello, 2021, please be better than 2020 was. I’ve got lots of fun, interesting episodes planned for this year, but let’s start the year off right with an episode about, uh, a major extinction event. Specifically it’s the Late Ordovician mass extinction, which occurred around 450 million years ago. This is the first of a series of episodes about extinction events I have planned for this year, which I hope you’ll find interesting. We’ll also learn about an animal called the sea scorpion. If you’ve listened to episode 69, about the Cambrian explosion, you may remember that the fossil record shows that around 540 million years ago life on earth evolved from simple organisms into much more complicated ones. This happened relatively quickly in geologic terms, about 15 to 25 million years for life to go from microbial mats, simple worms, and single-celled animals to fantastical creatures with shells and spikes and novel ways of feeding as animals adapted to fit new ecological niches. But what happened after that? A series of extinction events, that’s what. The first extinction event researchers can identify from the fossil record is called the End-Botomian extinction event, which happened around 510 million years ago in two phases. We’re not sure what caused the extinctions, but the main theory is that a series of massive volcanic eruptions caused climate changes that led to acidification of the oceans and a resulting loss of oxygen from the water. This was followed by another extinction event around 500 million years ago. All told, during these ten million years or so, about 40% of all species of animal went extinct. But remember, all we have to work with is the fossil record. Researchers know how old particular rock strata are, strata being the term for layers, so when they find a fossil embedded in a rock they know roughly how long ago it lived. Only a small percentage of animals that ever live end up fossilized, and only a small percentage of fossils are ever found by humans, and only a small percentage of fossils found by humans get studied by experts. So while scientists do their best, they’re working with a limited amount of data to determine what happened half a billion years ago. It’s like trying to determine the rise and fall of empires from a series of random photographs. But when older rocks show a whole lot of fossils of various kinds, and then slightly younger rocks show way fewer or no fossils, researchers can be pretty sure that something catastrophic happened to kill off a lot of animal life in a relatively short amount of time. If they find the same changes in rocks of the same age in different parts of the world, the catastrophe was probably worldwide and serious enough to impact life on Earth for thousands or even millions of years. That’s what happened in the late Ordovician. Around 460 million years ago, about the time that life was getting back to normal after the last extinction event, glaciers started to form across the land. Most of the continents at this time were smushed together into a supercontinent called Gondwana, which was mostly in the southern hemisphere. Much of the rest of the Earth was one big ocean, and it was hot and tropical just about everywhere. But that changed when temperatures dropped drastically. Glaciers formed, sea levels fell, and some 60% of all life on Earth went extinct, all possibly within about one million years. We don’t know why, but we do have some clues and some theories. We know there was a major meteor event around 467 million years ago,
Let's finish off a very weird year and welcome in the new year with a basket of colorful frogs! The northern leopard frog comes in many color morphs, all of them pretty: The starry dwarf frog is also pretty and has an orange tummy: The astonishing turtle frog:   Poison dart frogs are colorful and deadly (blue poison dart frog, golden poison dart frog): The tomato frog looks like a tomato that is also a frog: Show transcript: Welcome to Strange Animals Podcast. I’m your host, Kate Shaw. It’s the very last week of 2020, and good riddance. Let’s kick the old year out the back door and welcome in the new year with a basket of pretty frogs. That’s right, we’ve got a frog episode this week! Let’s start with the northern leopard frog, with thanks to an anonymous reviewer who gave the podcast a really nice five-star review and only signed the review “norhern lepord frong.” I looked that frog up online to see what it looked like, and it’s so pretty, honestly, it’s just the prettiest frog! If you had a basket of northern leopard frogs, they might just look like friendly flowers, because while most are green or brown with darker spots, some are much brighter green with yellow markings, some are dark brown, and some are even pinkish white because of a rare albino trait. Its spots are outlined with yellow or light green and it has two folds of skin that run the length of the body and are sometimes yellow. These folds of skin are called dorsolateral folds and many frogs have them, although they’re not always as easy to spot as in the northern leopard frog. The northern leopard frog is native to the northern part of North America, especially southern Canada and the northern and western United States. It grows up to 4.5 inches long, or 11.5 cm, measured from snout to vent. As you may recall from previous frog episodes, that’s how frogs are always measured. It basically just means nose to butt. Females are larger than males, which is also the case for most frogs. It lives anywhere that it can find fresh water, including rivers, streams, creeks, ponds, marshes, even drainage ditches, but it prefers slow-moving or quiet water. As a result, it’s threatened by loss of habitat, pollution, and climate change, all of which affect the water it needs to live, and it’s also threatened by non-native animals and diseases. But while it doesn’t live in as many places as it used to, right now it’s doing fine overall and isn’t considered endangered. Like most frogs, the northern leopard frog eats insects and any other small animal it can swallow. It has a long sticky tongue that it can shoot out so quickly that even an insect can’t outfly it, but it doesn’t just eat insects. It’s a big frog with a big mouth, and it’s been recorded eating other species of frog, small snakes, small birds, and even a bat. But mostly it eats insects, slugs, snails, and worms. Probably the frog that was documented as catching and eating a bat is famous in the northern leopard frog world, or at least it would be if real life was like the inside of my head and frogs had their own tiny newspapers. The northern leopard frog was once considered a delicacy, with most frogs’ legs coming from this particular species. It’s also sometimes kept as a pet. It’s mostly nocturnal and semi-aquatic, sometimes called the meadow frog because it will leave the water to hunt for food in grassy areas. It hibernates in winter but is better adapted to cold weather than a lot of frogs are. There’s also a southern leopard frog that looks very similar to the northern leopard frog but lives farther south, which you probably guessed from the name. It’s also slightly larger than the northern leopard frog, up to five inches long, or 13 cm. Male leopard frogs, like many other frogs, have special vocal sacs in the throat that allow a male to make a loud call in spring to attract females. Different species of frog have different calls,
Thanks to Nicholas and Juergen for their suggestions! Let's learn about some insects that migrate and swarm! Further listening: The Animal Migrations Patreon episode (it's unlocked so anyone can listen) Further reading: Ladybugs Are Everywhere! Monarch butterflies gathered in winter: The painted lady butterfly: The bogong moth: The globe skimmer dragonfly: Ladybugs spend the winter in bunches, sometimes in your house: A stink bug, one of many potentially in your house: This person is not afraid of locusts even though I would be freaking out: A field in Australia being eaten by locusts (the brown part): Show transcript: Welcome to Strange Animals Podcast. I’m your host, Kate Shaw. Let’s learn about some insects this week, but not just any old insects. Let’s learn about insects that swarm. Thanks to Nicholas and Juergen for suggestions that led to this episode! Nicholas suggested long-distance migrators ages ago, and I did do an episode about migration for a Patreon episode. I’ve unlocked that episode so anyone can listen to it, with a link in the show notes. I’ve also used some of the information in that episode for this one, specifically the part about monarch butterflies. In fact, let’s start with the monarch butterfly. The monarch is a good-sized butterfly, with orange and black wings with white spots along the edges and a wingspan of up to four inches, or 10 cm. It lives in many parts of the world, but only the North American subspecies of monarch migrates. Every autumn, monarch butterflies living in North America, where they breed, head south to winter in the mountains of central Mexico, a trip that can be as long as 3,000 miles, or 4,800 km. They spend the winter in oyamel fir trees, millions of butterflies in the branches. When spring arrives, the butterflies head north again, but they don’t get all the way back to their original range. If they’re lucky, they reach Texas, where they mate and lay eggs on milkweed plants before dying. The caterpillars hatch, eat up the milkweed, spin cocoons, and emerge transformed into new butterflies that continue the flight north, deeper into North America. But those butterflies don’t make it all the way to their parents’ home range either. They too stop to mate, lay eggs, and die. It can take four or five generations for monarch butterflies to reach Canada and other distant parts of North America, and by that time it’s autumn again. The butterflies fly back to Mexico. Butterflies heading north live out their entire life cycle in only five or six weeks, but the butterflies that return to Mexico live up to eight months. Researchers think the northward migration follows the blooming of milkweed plants. Milkweed contains toxins that make the monarchs poisonous to a lot of animals, but some birds and a lot of insects will eat the caterpillars. Some populations of North American monarchs overwinter in California, Arizona, or Florida instead of Mexico. The North American monarch is declining in numbers, probably mostly due to the decline of milkweed. The best way to help the butterfly is to plant milkweed in any area you don’t want to mow very often. While the monarch migration is astounding, it’s not the only butterfly that migrates. A small, pretty butterfly called the painted lady lives throughout much of the world, even the Arctic, but not South America for some reason. Some populations stay put year-round, but some migrate long distances. One population winters in tropical Africa and travels as far as the Arctic Circle during summer, a distance of 4,500 miles, or 7,200 km, which takes six generations. The butterflies who travel back to Africa fly at high altitude, unlike monarch butterflies that fly quite low to the ground most of the time. Unlike the monarch, painted ladies like many kinds of flowers, not just one plant, and they don’t always migrate every year. In Australia,
Let's find out about some gigantic birds this week! Thanks to Pranav and Richard for the suggestions! Further reading: Exceptionally preserved fossil gives voice to ancient terror bird Antarctica yields oldest fossils of giant birds with 21-foot wingspans Look at that beak! Llallawavis scagliai: Big birdie! A red-legged seriema and an unfortunate snake: Another big birdie! Toothy birdie! Show transcript: Welcome to Strange Animals Podcast. I’m your host, Kate Shaw. This week we’re going to learn about some gigantic extinct birds! Pranav wants to hear about Phorusrhacidae, also known as the terror bird. Something called a terror bird is definitely going to be interesting. My brother Richard also tweeted me about some huge extinct birds called pelagornithids, so we’ll talk about them too. Both birds were huge and successful, but extremely different from each other. Phorusrhacidae is the name for a family of flightless birds that lived from about 62 million years ago to a little under 2 million years ago. Flightless birds may make you think of ostriches and penguins and dodos, but remember that Phorusrhacids were called terror birds. They were carnivores and many of them were enormous. Most terror birds lived in South America, with one species known from southern North America. A few newly discovered bird fossils from Africa and Europe may have been close relations of terror birds, but palaeontologists are still studying them. Various species of terror bird ranged in size from about 3 feet tall to 10 feet tall, or 1 to 3 meters, and had long, strong legs that made them fast runners. The terror bird also had a long, strong neck, a sharp hooked beak, and sharp talons on its toes. The beak was strong but the jaw muscles were relatively weak. Researchers think that it ambushed prey and chased it down, then either kicked it to death with its sharp talons or held it down with its feet and stabbed it to death with its beak. Smaller species may have grabbed its prey and thrown it back down with enough force to injure, stun, or outright kill the animal. It may have swallowed small prey whole and regurgitated pellets made up of compressed fur and bones, the way many modern carnivorous birds do today. Although the beak was strong, it was also hollow. This would have made it weigh less, which meant that the bird could move its head more quickly. Some researchers think that it might also have acted as a resonant chamber, and that the bird could clap its beak closed to make a loud noise to communicate with other terror birds. It had excellent hearing and vision, but a poor sense of smell. Many details of what we know about terror birds come from a single specimen discovered in 2010 in Argentina. The bird lived around 3 million years ago and stood four feet tall, or 1.2 meters. It was described in 2015 and is named Scaglia’s magnificent bird. I am not going to attempt to pronounce its scientific name [Llallawavis scagliai], but I’ll put it in the show notes along with a picture. Almost the entire skeleton is preserved in stunning detail, including details that hardly ever preserve, like the tiny bones that help the eye focus. Studies of the tiny ear bones and other details of the ear indicate that its hearing was most acute at low frequencies, which meant it would have been good at hearing footsteps. It also probably had a deep voice. The terror bird had wings, but they were small and probably only used for display. The wings did have claws, though, and may have been used to fight other terror birds over mates or territory. Young terror birds of some species might have been able to fly, although adults certainly couldn’t. The earliest known terror bird, Paleopsilopterus, lived about 60 million years ago in what is now Brazil. It was relatively small, only about three feet high, or 1 meter. It evolved only a few million years after the non-avian dinosaurs went extinct,
This week we'll learn about a fascinating parrot and some more weird praying mantises! Thanks to Page and Viola for the suggestions! Further watching: Nova Science Now: Irene Pepperberg and Alex Alex: Number Comprehension by a Grey Parrot The Smartest Parrots in the World Further reading: Why Do Parrots Talk? Ancient mantis-man petroglyph discovered in Iran Alex and Irene Pepperberg (photo taken from the "Why do parrots talk?" article above): Two African grey parrots: The "mantis man" petroglyph: The conehead mantis is even weirder than "ordinary" mantis species: Where does Empusa fasciata begin and the flower end (photo by Mehmet Karaca)? The beautiful spiny flower mantis: The ghost mantis looks not like a ghost but a dead leaf: Show transcript: Welcome to Strange Animals Podcast. I’m your host, Kate Shaw. This week we’re going to look at two completely unrelated animals, but both are really interesting. Thanks to Page and Viola for the suggestions! We’ll start with Page’s suggestion, the African gray parrot. We haven’t talked about very many parrots in previous episodes, even though parrots are awesome. The African gray parrot is from Africa, and it’s mostly gray, and it is a parrot. Specifically it’s from what’s called equatorial Africa, which means it lives in the middle of the continent nearest the equator, in rainforests. It has a wingspan of up to 20 inches, or 52 cm, and it has red tail feathers. The African gray parrot is a popular pet because it’s really good at learning how to talk. It doesn’t just imitate speech, it imitates various noises it hears too. It’s also one of the most intelligent parrots known. Some studies indicate it may have the same cognitive abilities as a five year old child, including the ability to do simple addition. It will also give its treats to other parrots it likes even if it has to go without a treat as a result, and it will share food with other parrots it doesn’t even know. Despite all the studies about the African grey in captivity, we don’t know much about it in the wild. Like other parrots, it’s a highly social bird. It mostly eats fruit, seeds, and nuts, but will also eat some insects, snails, flowers, and other plant parts. It mates for life and builds its nest in a tree cavity. Both parents help feed the babies. That’s basically all we know. It’s endangered in the wild due to habitat loss, hunting, and capture for sale as pets, so if you want to adopt an African grey parrot, make sure you buy from a reputable parrot breeder who doesn’t buy wild birds. For every wild parrot that’s sold as a pet, probably a dozen died after being taken from the wild. A good breeder will also only sell healthy birds, and will make sure you understand how to properly take care of a parrot. Since the African grey can live to be up to sixty years old, ideally it will be your buddy for basically the rest of your life, but it will require a lot of interaction and care to stay happy and healthy. One African grey parrot named Alex was famous for his ability to speak. Animal psychologist Dr. Irene Pepperberg bought Alex at a pet shop in 1977 when he was about one year old, not just because she thought parrots were neat and wanted a pet parrot, but because she wanted to study language ability in parrots. Pepperberg taught Alex to speak and to perform simple tasks to assess his cognitive abilities. Back then, scientists didn’t realize parrots and other birds were intelligent. They thought an animal needed a specific set of traits to display intelligence, such as a big brain and hands. You know, things that humans and apes have, but most animals don’t. Pepperberg’s studies of Alex and other parrots proved that intelligence isn’t limited to animals that are similar to us. Alex had a vocabulary of about 100 words, which is average for a parrot, but instead of just mimicking sounds,
This week we're going to learn about elephants! Thanks to Damian, Pranav, and Richard from NC for the suggestions! Further Reading: Dwarf Elephant Facts and Figures An Asian elephant (left) and an African elephant (right). Note the ear size difference, the easiest way to tell which kind of elephant you're looking at: Business end of an Asian elephant's trunk: An elephant living the good life: Can't quite reach: Elephant teef: A dwarf elephant skeleton: An elephant skull does kind of look like a giant one-eyed human skull: Show transcript: Welcome to Strange Animals Podcast. I’m your host, Kate Shaw. This week we’re going to learn about some elephants! We’ve talked about elephants many times before, but not recently, and we’ve not really gone into detail about living elephants. Thanks to Damian, Pranav, and Richard from NC for the suggestions. Damian in particular sent this suggestion to me so long ago that he’s probably stopped listening, probably because he’s grown up and graduated from college and started a family and probably his kids are now in college too, it’s been so long. Okay, it hasn’t been that long. It just feels like it. Sorry I took so long to get to your suggestion. Anyway, Damian wanted to hear about African and Asian elephants, so we’ll start there. Those are the elephants still living today, and honestly, we are so lucky to have them in the world! If you’ve ever wished you could see a live mammoth, as I often have, thank your lucky stars that you can still see an elephant. Elephants are in the family Elephantidae, which includes both living elephants and their extinct close relations. Living elephants include the Asian elephant and the African elephant, with two subspecies, the African savanna elephant and the African forest elephant. The savanna elephant is the largest. The tallest elephant ever measured was a male African elephant who stood 13 feet high at the shoulder, or just under 4 meters, which is just ridiculously tall. That’s two Michael Jordans standing on top of each other, and I don’t know how you would clone Michael Jordan or get one of them to balance on the other’s head, but if you did, they would be the same size as this one huge elephant. The largest Asian elephant ever measured was a male who stood 11.3 feet tall, or 3.43 meters. Generally, though, it’s hard to measure how tall or heavy a wild elephant is because first of all they don’t usually want anything to do with humans, and second, where are you going to get a scale big and strong enough to weigh an elephant? Most male African elephants are closer to 11 feet tall, or 3.3 meters, while females are smaller, and the average male Asian elephant is around 9 feet tall, or 2.75 meters, and females are also smaller. Even a small elephant is massive, though. Because of its size, the elephant can’t jump or run, but it can move pretty darn fast even so, up to 16 mph, or 25 km/h. The fastest human ever measured was Usain Bolt, who can run 28 mph, or 45 km/h, but only for very short distances. A more average running speed for a person in good condition is about 6 mph, or 9.6 km/h, and again, that’s just for short sprints. So the elephant can really hustle. Its big feet are cushioned on the bottoms so that it can actually move almost noiselessly. And I know you’re wondering it, so yes, an elephant could probably be a good ninja if it wanted to. It would have to carry its sword in its trunk, though. The elephant is also a really good swimmer, surprisingly, and it can use its trunk as a snorkel when it’s underwater. It likes to spend time in the water, which keeps it cool, and it will wallow in mud when it can. The mud helps protect it from the sun and from insect bites. Its skin is thick but it’s also sensitive, and it doesn’t have a lot of hair to protect it. The elephant is a herbivore that only eats plants, but it eats a lot of them.
Thanks to Lorenzo for this week's topic, carnivorous sponges! How can a sponge catch and eat animals? What is its connection to the mystery of the Eltanin Antenna? Let's find out! Further reading/watching: New carnivorous harp sponge discovered in deep sea (this has a great video attached) How Nature's Deep Sea 'Antenna' Puzzled the World Asbestopluma hypogea, beautiful but deadly if you're a tiny animal: The lyre sponge, also beautiful but deadly if you're a tiny animal: The ping-pong tree sponge, also beautiful but deadly if you're a tiny animal: The so-called Eltanin antenna: A better photo of Chondrocladia concrescens, looking less like an antenna and more like a grape stem: Show transcript: Welcome to Strange Animals Podcast. I’m your host, Kate Shaw. This week we’re going to learn about carnivorous sponges, which is a suggestion from Lorenzo. When I got Lorenzo’s email, I thought “oh, neat” and added carnivorous sponges to the giant, complicated list I keep of topic suggestions from listeners and my Aunt Janice, and also animals I want to learn more about. When I noticed carnivorous sponges on the list the other day, I thought, “Wait, sponges are filter feeders. Are there even any carnivorous ones?” The answer is yes! Most sponges are filter feeders, sure, but there’s a family of sponges that are actually carnivorous. Caldorhizidae is the family, and it’s made up of deep-sea sponges that have only been discovered recently. We know there are lots more species out there because scientists have seen them during deep-sea rover expeditions without being able to study them closely. We talked about sponges way back in episode 41, with some mentions of them in episodes 64 and 168 too, but only the filter feeder kind. Let’s first learn how a filter feeder sponge eats, specifically members of the class Demosponge, since that’s the class that the family Caldorhizidae belongs to. Sponges have been around for more than half a billion years, since the Cambrian period and possibly before, and they’re still going strong. Early on, sponges evolved a simple but effective body plan and just stuck to it. Of course there are lots and lots and lots of different species with different shapes and sizes, but they almost all work the same way. Most have a skeleton, but not the kind of skeleton that you think of as an actual skeleton. They don’t have bones. The skeleton is usually made of calcium carbonate and forms a sort of dense net that’s covered with soft body tissues. The tissues are often further strengthened with small pointy structures called spicules. If you’ve ever played a game called jacks, where you bounce a ball and pick up little metal pieces between each bounce, spicules sort of resemble jacks. The sponge has lots of open pores in the outside of its body, which generally just resembles a sack or sometimes a tube. One end of the sack is attached to the bottom of the ocean, or a rock or something. The pores are lined with cells that each have a teensy structure called a flagellum, which is sort of like a tiny tail. The sponge pumps water through the pores by beating those flagella. Water flows into the sponge’s tissues, which are made up of lots of tiny connected chambers. Cells in the walls of these chambers filter out particles of food from the water, much of it microscopic, and release any waste material. The sponge doesn’t have a stomach or any kind of digestive tract, though. The cells process the food individually and pass on any extra nutrients to adjoining cells. Obviously, this body plan is really effective for filter feeding, not so effective for chasing and killing small animals to eat. The sponge you may have in your kitchen is probably synthetic or manufactured from a sponge gourd, not an actual bath sponge animal, but it’s arranged the same way. Go look at that sponge, or just imagine it, and then compare it mentally to, say, a tiger.
Let's learn about a whole lot of mustelids, including some otters, weasels, and their relations and ancestors! Thanks to Jacob for the suggestion! Further reading: Weasels in Stone: Mustelid Evolution With voices joined in chorus, giant otter families create a distinct sound signature Further watching/listening: Video of giant river otters making noise Giant river otters: The least weasel is possibly the most cute: This mink would like to keep its fur for itself please and thank you: The Patagonian weasel: The greater grison looks like a badger and a honey badger: The fisher: The Chinese ferret badger has a long nose compared to most mustelids: Show transcript: Welcome to Strange Animals Podcast. I’m your host, Kate Shaw. This week we’ll learn about some mustelids, better known as weasels and their close relations! Thanks to Jacob for this week’s suggestion. The weasel is a member of the family Mustelidae. Members of the family are called mustelids, which includes wolverines and badgers, which we talked about in episode 62, otters, which we talked about in episode 37, and ferrets, which we talked about in episode 150. Most mustelids have short legs and long, slender, flexible bodies, although badgers are an exception since they’re broad-bodied. This body shape allows a mustelid to enter the burrows of other animals and kill them, because mustelids are carnivores. But not all animals that look like weasels and ferrets are actually mustelids. The mongoose, for instance, is not a mustelid. The study of how mustelids evolved and spread throughout much of the world is a pretty hot topic these days, which makes it confusing to summarize since so much new knowledge keeps shaking up what we know. But I’ll do my best. The first mustelids evolved around 30 million years ago in what is now Eurasia, and spread to North America much later and eventually into South America. The oldest mustelid fossils found in North America are a group of animals called oligobunines. I read that word as oligobunnies every single time, but they didn’t look like bunnies. They probably looked like wolverines, which are related to badgers but look more like miniature bears with longer tails, but they probably spent more time underground than wolverines do. At least one oligobunid might have grown as big as a black bear, at least a small bear. Megalictis was probably an ambush predator and lived around 21 million years ago in what is now the upper Midwest of North America. It had teeth meant for crushing bones. Another oligobunid, Zodiolestes, is one we talked about briefly in episode 103, about trace fossils. The first fossil Zodiolestes was found in a corkscrew-shaped Palaeocastor burrow, presumably because it got stuck in the burrow while it was hunting, but Zodiolestes was also adapted to dig. The oligobunids went extinct around 10 million years ago, possibly outcompeted by a new wave of modern mustelids that evolved in Asia and spread into North America. One mustelid, Ekorus ekakeran, lived about six million years ago in what is now Africa, with fossils found in Kenya. But it didn’t look like any other mustelid. It had long legs, for one thing. It stood almost two feet tall at the shoulder, or 60 cm, and was built more like a leopard than a mustelid. It would have been a much faster runner than other mustelids as a result, although it was probably an ambush predator. Researchers think it was eventually outcompeted by big cats when they evolved as the forests changed into grasslands. The biggest mustelid that ever lived, as far as we know, is Enhydriodon, a type of gigantic otter. It lived in Africa around 4 million years ago and may have been the size of a small bear, even bigger and heavier than Megalictis. We only have a single fossil of Enhydriodon, though, a skull, so scientists can only estimate the animal’s size compared to what we know about extinct and ...
Rate Podcast

Share This Podcast

Recommendation sent



Join Podchaser to...

  • Rate podcasts and episodes
  • Follow podcasts and creators
  • Create podcast and episode lists
  • & much more

Podcast Details

Created by
Katherine Shaw
Podcast Status
Feb 6th, 2017
Latest Episode
May 3rd, 2021
Release Period
Avg. Episode Length
16 minutes
Do you host or manage this podcast?
Claim and edit this page to your liking.
Are we missing an episode or update?
Use this to check the RSS feed immediately.