Episode from the podcastFoundMyFitness

Dr. Eric Verdin on Ketogenic Diet Longevity, Beta-Hydroxybutyrate & HDAC Inhibitors

Released Wednesday, 13th December 2017
Good episode? Give it some love!
Eric M. Verdin, M.D. is the fifth president and chief executive officer of the Buck Institute for Research on Aging and is a professor of Medicine at UCSF. Dr. Verdin's laboratory focuses on the role of epigenetic regulators in the aging process, the role of metabolism and diet in aging and on the chronic diseases of aging, including Alzheimer’s, proteins that play a central role in linking caloric restriction to increased healthspan, and more recently a topic near and dear to many of you, ketogenesis. He's held faculty positions at the University of Brussels, the NIH and the Picower Institute for Medical Research.
In this episode, we discuss...
  • The effects of a low protein, cyclic ketogenic diet beginning in midlife (12 months of age) in male mice. The result? Increased healthspan and improved memory. Dr. Verdin explains how the cyclic ketogenic diet decreased insulin, IGF-1, and mTOR signaling and decreased fatty acid synthesis, and increased PPAR-alpha (which promotes beta-oxidation and mitochondrial biogenesis in muscle).
  • How this diet is somewhat qualitatively similar to fasting.
  • Some of the possible reasons why the cyclic ketogenic diet created such a striking improvement in memory even when compared to younger mice.
  • How beta-hydroxybutyrate, which is the major circulating ketone body during fasting and nutritional ketosis, may, in addition to being an energy source, regulate inflammation and gene expression by acting as a signaling molecule by inhibiting what are known as class 1 histone deacetylases (HDACs).
  • How this inhibition of class 1 HDACs leads to the increased expression of notorious longevity gene Foxo3, which may help explain why mice given an exogenous beta-hydroxybutyrate ester had lower markers of inflammation and oxidative damage, which are physiological contributors to the aging process.
  • The role of the nicotinamide adenine dinucleotide (NAD+) in the aging process and how replacing declining levels (or preventing them from declining in the first place) may prove to be an important anti-aging strategy.
  • Some of the reasons why NAD+ might be declining with age, its role in DNA damage repair via an enzyme known as PARP, and what the literature says about the NAD+ precursor nicotinamide riboside.
  • How a special class of enzymes called sirtuins, also known to be activated by caloric restriction and caloric restriction mimetic resveratrol, is tightly correlated with the level of NAD+ and how this "energetic currency" rises in response to fasting.
  • The role of the sirtuin enzymes in regulating mitochondrial function, neuronal functions, stem cell rejuvenation and why they may be important in delaying the aging process.
Grab the full show notes, timeline & glossary ….
Did you enjoy this podcast? It was brought to you by people like you!
Click here to visit our crowdsponsor page where yo….

Creators & Guests

We don't know anything about the creators of this episode yet. You can add them yourself so they can be credited for this and other podcasts.

Episode Reviews

This episode hasn't been reviewed yet. You can add a review to show others what you thought.

This podcast, its content, and its artwork are not owned by, affiliated with, or endorsed by Podchaser.
Rate Episode

Share This Episode

Recommendation sent

Join Podchaser to...

  • Rate podcasts and episodes
  • Follow podcasts and creators
  • Create podcast and episode lists
  • & much more

Moderator Stats

ID
24478124
Visibility
visible
Podcast ID
54631

Episode Details

Length
1h 3m 26s
Explicit
No
Episode Type
Full

Episode Tags

Do you host or manage this podcast?
Claim and edit this page to your liking.